🌟 Happy New Year! 🌟

Advanced Nutrients Logo

🌟 Happy New Year! 🌟

🌟 Happy New Year! 🌟

Everything You Need to Know About Fixing Nutrient Problems

Plants need correct ratios and levels of properly-configured nutrients if they are to eagerly grow, bloom and yield.
During a plant’s life cycle, it needs different types and ratios of nutrients. If you are growing indoors using hydroponics techniques, it is especially important to provide proper nutrients in correct ratios at the right time.

That’s because hydroponics gardens do not use soil (which contains nutrients) but instead use sterile root zone media that needs all nutrients added to it so plants can uptake nutrients needed for growth.

Plants suffer when they are fed the wrong kind of nutrients, when they are fed nutrients at the wrong time, when they are fed too much nutrients, or when they are not fed enough nutrients. They also suffer if nutrients are fed, but are not biologically available for uptake into the plant.

The availability of nutrients is affected not just by how much nutrients a gardener provides plants, but by the root zone environment and other factors. For example, the acidity or alkalinity of nutrient water affects whether plants can uptake nutrients.

The quality of nutrient formulas also affects the degree to which nutrients are available to plants. Advanced Nutrients fertilizers are made with the highest quality pharmaceutical grade source materials. We use superior forms of “chelates”, which are a substance that binds with nutrients and helps them penetrate into roots and be easily transported inside plants.

So if you are experiencing nutrient-related problems, be sure you are using Advanced Nutrients products, and check the pH of your nutrient water and root zone media to ensure that the pH is in the ideal range between 5.8 and 6.3.

How To Use This Guide

Nutrient problems can be caused by a variety of factors, including undersupply or oversupply of nutrients. But problems are never as simple as they seem, so you should read and use this guide carefully- or you could do more harm than good.

Plant nutrients are classified into two categories: macronutrients and micronutrients.

Macronutrients are elements that plants most need. Macronutrients are nitrogen, phosphorus, potassium, calcium, magnesium and sulfur, with nitrogen, phosphorus and potassium being most commonly recognized as macronutrients.

Micronutrients are elements that plants need in smaller amounts; they are sometimes called trace elements. These include iron, manganese, copper, zinc, molybdenum, cobalt, boron and chlorine. Calcium, magnesium and sulfur and sometimes classified as micronutrients.

The following information focuses on nutrient deficiencies, excesses and interactions. You will be able to read information and view photos that illustrate or describe what your plants will look like, and/or how they will be affected by specific deficiencies.

Note that the most common deficiencies involve iron, manganese, zinc, calcium or nitrogen.

Our research shows that interactions between nutrients can affect deficiency syndromes. For example, the correct ratio of iron and sulfur uptake is very important for optimal nitrogen uptake.

When you are trying to understand if a plant problem is caused by a nutrient problem, it is important to note not just what the plant symptom looks like, but where it appears on the plant.

Indeed, the location on the plant that a symptom shows up is a critical factor that will help you ascertain the cause of the deficiency.

That’s because macro and micronutrients fall into two categories: mobile and immobile. Mobile nutrient deficiencies will show up in older growth first. Immobile nutrient deficiencies will show up in new growth first.

Mobile elements are nitrogen, phosphorus, potassium, molybdenum, magnesium and zinc. Immobile elements are iron, copper, manganese, chlorine, cobalt, boron, calcium and sulfur.

For example, sulfur deficiency is difficult to identify, but it most often appears on older growth first. Sulfur is considered a semi-mobile element.

If you believe you have identified a particular nutrient problem, be sure to do other troubleshooting before you start augmenting an allegedly deficient nutrient.

Perhaps it’s not a nutrient deficiency at all. It could be that something is wrong in your garden environment. And problems caused by pests, diseases, molds and mildews often show symptoms that resemble those caused by nutrients.

For example, if a plant is yellow at the top with some browning, and the rest of the plant is healthy down below, it could be that your light is too close to the plant and is burning it.

If you see tiny yellow spots on leaves, they could be caused by spider mites, not nutrient problems.

And before you begin adding extra nutrients to correct an alleged deficiency, flush the root zone. It sounds counter-intuitive, but sometimes too much nutrients can cause a chemical reaction that makes some nutrients unavailable to plants.

When you flush your root zone with distilled water and Advanced Nutrients Final Phase, you clear out accumulated nutrients and pollutants that may be interfering with the plant’s ability to uptake nutrients.

To use this guide, read the descriptions and look at the pictures. Examine your plants carefully. Contact Advanced Nutrients technical support if you see problems that you cannot fix on your own or about which you are unsure.

With practice and diligence, you will gradually become able to diagnose nutrient-caused problems.

Click on the nutrient listed below for nutrient problem photos and more infomation.

Our research shows that interactions between nutrients can affect deficiency syndromes. For example, the correct ratio of iron and sulfur uptake is very important for optimal nitrogen uptake.

When you are trying to understand if a plant problem is caused by a nutrient deficiency, it is important to note not just what the deficiency looks like, but where it appears on the plant.

Indeed, the location on the plant that a deficiency symptom shows up is a critical factor that will help you ascertain the cause of the deficiency.

That’s because macro and micronutrients fall into two categories: mobile and immobile. Mobile nutrient deficiencies will show up in older growth first. Immobile nutrient deficiencies will show up in new growth first.

Mobile elements are nitrogen, phosphorus, potassium, molybdenum, magnesium and zinc. Immobile elements are iron, copper, manganese, chlorine, cobalt, boron, calcium and sulfur.

Sulfur deficiency is difficult to identify, but it most often appears on older growth first. Sulfur is considered a semi-mobile element.

If you believe that you have identified a particular deficiency issue, be sure to do other troubleshooting before you start augmenting an allegedly deficient nutrient.

Perhaps it’s not a nutrient deficiency at all. It could be that something is wrong in your garden environment.

For example, if a plant is yellow at the top with some browning, and the rest of the plant is healthy down below, it could be that your light is too close to the plant and is burning it.

And before you begin adding extra nutrients to correct an alleged deficiency, flush the root zone. It sounds counterintuitive, but sometimes too much nutrients can cause a chemical reaction that makes some nutrients unavailable to plants.

When you flush your root zone with distilled water and Advanced Nutrients Final Phase, you clear out accumulated nutrients and other pollutants that may be interfering with the plant’s ability to uptake nutrients.

To use this guide, read the descriptions and look at the pictures. Examine your plants carefully. Contact Advanced Nutrients technical support if you see problems that you cannot fix on your own. With practice and diligence, you will gradually become able to diagnose nutrient-caused problems.


Definition Of Plant Terms: Plant Science Vocabulary

Following are terms commonly used to name plant parts or to describe how nutrient problems look on plants.

Note that plant leaves are the part of the plant where the effects of deficiencies are most easily seen.
Here are the terms:

Mottling – Patches of green and light, non-green areas on leaves.

Firing – Yellowing, followed by rapid death of lower leaves, moving up the plant and giving the same appearance as if someone torched the bottom of the plants.

Necrosis – Severe deficiencies result in the death of the entire plant or parts of the plant first affected by the deficiency. Plant tissue browns and dies. Tissue which has already died on a still living plant is called necrotic.

Necrotic – dead spots on leaves.

Chlorosis – Yellowing of leaf tissue. A common deficiency symptom because many nutrients affect the photosynthesis process directly or indirectly. If leaves are yellow, this is a sure sign that something is seriously wrong in your garden.

Interveinal Chlorosis – Yellowing between leaf veins but the veins themselves are still green. In grasses, this is called “striping.”

Rosetting – Very short internodes.

Stippling – Small spots or dots on leaves.

Axil – The angle between the upper side of the stem and a leaf, branch, or petiole.

Axillary bud – A bud that develops in the axil.

Flower – The reproductive unit of a female plant.

Flower stalk – Structure that supports the flower. Internode – The area of the stem between any two adjacent nodes.

Internode – The area of the stem between any two adjacent nodes.

Lateral Shoot (branch) – An offshoot of the stem of a plant.

Leaf – an outgrowth of a plant that grows from a node in the stem. Most leaves are flat and contain chloroplasts; their main function is to convert energy from sunlight into chemical energy (food) through photosynthesis. Healthy leaves are lime green.

Node – The part of the stem of a plant from which a leaf, branch, or aerial root grows; each plant has many nodes.

Petiole – The leaf stalk that attaches a leaf to the plant.

Root – A root is a plant structure that obtains food and water from the soil, stores energy, and provides support for the plant. Most roots grow underground.

Root cap – A structure at the ends (tips) of the roots. It covers and protects the apical meristem (the actively growing region) of the root.

Stem (also called the axis) – The main support of the plant.

Tap root – The main root of some plants. The tap root extends straight down under the plant.

Terminal bud – Located at the apex (tip) of the stem. Terminal buds have special tissue, called the apical meristem, consisting of cells that can divide indefinitely.



Nitrogen – (N) (mobile in plant, mobile in soil)

nitrogenNitrogen deficiencies often appear first in older leaves, and will manifest as a light green overall appearance.

As symptoms progress, the leaves turn a yellow color and stems become weak and lower leaves drop off. Necrosis develops in older leaves. New growth becomes weak and spindly. Tops and roots grow poorly.

When plants are in the mid to later growth or flowering stages, older growth and large fan leaves may show nitrogen deficiency.

This is normal during the late stage of floral development because plants near the end of their lives are using up their nutrient and carbohydrate reserves. As leaves turn completely yellow, remove them from the plant.

Nitrogen excess turns foliage very dark green and can make plants susceptible to drought, disease and insect predation.

Nitrogen is crucial to photosynthesis and reproductive function. Nitrogen makes proteins and is essential to new cell growth. Nitrogen is mainly utilized for leaf and stem growth, as well as overall plant size and vigor.

Nitrogen moves easily to active young shoots and leaves and moves more slowly to older leaves. Nitrogen is involved in the structuring of amino acids, enzymes (specialized proteins that perform duties inside plants), proteins and nucleic acids. All of these are essential for cell division and most other plant functions. Obviously, nitrogen is essential to plant growth.

The “salts” commonly used as a source of nitrogen are: potassium nitrate (KNO3), ammonium nitrate (NH4N03) and calcium nitrate (Ca (N03)2.4H2O).

Nitrate is transported via xylem to all parts of the plant, where it participates in nitrogen assimilation. Nitrate is stored in cell vacuoles and fulfills important functions in the osmo-regulation and anion-cation balance in plant cells.

Inorganic nitrogen is reduced to ammonia and incorporated in organic molecules. Ammonium in the roots is most commonly stored as organic nitrogen.

This reaction is carried out by two enzymes, nitrate and nitrite reductases. Nitrate is first converted into nitrite by nitrate reductase; then, nitrite is reduced into ammonia by nitrite reductase.

Conversion of nitrate into nitrite occurs in the cytoplasm. Nitrate reductase consists of FAD, cytochromes [Fe2/Fe3] and molybdenum [Mo(V)/(VI)].

These components form integral parts of the electron transport chain through which electrons are used to reduce nitrate to nitrite. If high nitrate concentrations are present it can also be transported to the leaves where it is then reduced.

Glutamine synthetase and glutamate synthase are key enzymes in conversion of ammonium into glutamine. It is then converted into asparagine, arginine and allantoin act as basic sources of nitrogen for all macromolecules biosynthesis.

You should daily monitor your plants, focusing on their leaves. If you see pale leaves with a yellow tinge like the picture, you may have a nitrogen deficiency. Such deficiency can slow growth, decrease harvest size and damage the overall health of your plants.

The best ways to avoid nitrogen deficiency are to use only Advanced Nutrients products, and to keep your root zone pH in the ideal 5.8 to 6.3 range.



Phosphorus – (P) (mobile in plant, immobile in soil)

phosphorusPhosphorus deficiencies show up in older growth first. You will see leaf tips curling downwards.

When phosphorus is deficient, slow and spindly plants with reduced growth will result.

Phosphorus deficiency leaf damage often shows itself as patches that are dull dark green to bluish green. In severe cases, older leaf and petioles turn reddish purple.

Younger leaves appear yellowish green with purplish veins when nitrogen is deficient, but will have dark green veins when phosphorus is deficient.

Necrotic spots occur on leaf margins in advanced stages of phosphorus deficiency. Leaf tips look like they have been burnt.

Phosphorus deficiency is most common when ph is above 7 or below 5.5. Phosphorus will bind with soil very easily and this can cause excess phosphorus. Excess phosphorus can create deficiencies of zinc and iron.

Plants use phosphorus for photosynthesis, respiration, storing carbohydrates, cell division, energy transport (ATP, ADP), nucleic acids, enzymes and phospholipids.

Phosphorus builds strong roots and is vital for seed and flower production. Highest levels of phosphorus are needed during germination, early seedling growth and flowering.

Some crops require lots of phosphorus, but most require more potassium and nitrogen and magnesium than phosphorus. Several types of hydroponics plants need far more phosphorus during flowering than during vegetative growth phase.

Excess phosphorus causes decrease in the uptake of zinc, iron and copper- which starts a chain reaction of other macro and micro nutrient deficiencies.

When temperatures drop below 55 degrees Fahrenheit (12 degrees Celsius), plants have a hard time uptaking phosphorus.

Phosphorus is present in the plant as inorganic phosphate (Pi), or bound to a carbon atom. Phospholipids in bio-membranes contain a large amount of phosphorus. In these molecules phosphorus makes a connection between a diglyceride and an amino acid, amine or alcohol via a phosphate- ester bond.

Phospholipids consist of a hydrophobic tail, the diglyceride, and a hydrophilic head containing PO4. Membranes consist of two monolayers of phospholipids known as a lipid bilayer. The hydrophilic end of the phospholipids are oriented towards water (outward) while the hydrophobic ends are orientated inwards.

Phosphorous plays a very central role in determining the total energy metabolism of the plant because it forms energy-rich phosphate esters (C-P) such as glucose-6-phosphate.

Energy released during the glycolysis, oxidative phosphorylation or photosynthesis is used to synthesize ATP and this energy is liberated during the hydrolysis of ATP in ADP and inorganic phosphate. ATP is unstable and therefore turns over rapidly.

Plant cells contain two different forms of phosphate storage. Within the metabolic storage, phosphate is primarily stored as phosphate esters which can be found in the cytoplasm and mitochondria of the cell.

With non-metabolic storage, phosphate is stored as inorganic phosphate (Pi) in vacuoles.

Phosphorus regulates starch production in chloroplasts. ADP-glucose-pyrophosphorylase, an enzyme involved in the synthesis of starch, is inhibited by Pi and stimulated by triose-phosphates.

Phosphorous availability has a direct affect on the energy balance in the cell and nucleic acid biosynthesis.

Phosphorus deficiency can cause reduction in growth rate and show up as dark-green coloration of leaves, caused by accumulation of chlorophyll in leaves.

During flowering, you can make appropriate adjustments to phosphorus levels by using Advanced Nutrients Big Bud®.




potassiumPotassium deficiencies show first in older leaves and are displayed as: yellowing; singed or scorching of leaf margins with small necrotic areas that start small and get bigger; brittle stems accompanied by withering leaf tips; interveinal chlorosis starting at the base of young leaves; reddening and upwards leaf curl in older leaves.

In vegetative stage, plants develop too slow and are stunted. In bloom phase, flowers develop slowly and fail to achieve normal size. Deficiencies of potassium are a major cause of small harvests.

Excess potassium interferes with calcium and magnesium uptake.

Potassium is essential in function and formation of enzymes and proteins. It is also essential in regulation of osmotic pressure and in most metabolic cellular processes.

Augmentation of potassium during flowering phase can be achieved by administering Big Bud®.



Calcium – (immobile in plant, immobile in soil)

calciumDeficiencies show first in new, young growth. Calcium moves slowly within plants and concentrated in roots and older growth. That’s why young growth shows deficiency signs first.

Calcium deficiency symptoms include: leaf tips, leaf edges and new growth turn brown and die; chlorosis, necrosis, & distorted leaf margins; leaf tips hooking, turning brown and black, and dieing off.

Deficiency is not the only problem associated with calcium. If too much calcium is present early in a plant’s life cycle, growth is stunted. In other phases of growth, calcium excess interferes with magnesium and potassium uptake.

Calcium is transported via water to plant tissues, but if calcium levels in root zone media are too low, calcium deficiency can occur regardless of what levels are in the plant aboveground.

Because calcium is immobile, it cannot be easily translocated to the region of active growth in the shoot tip. Thus, calcium deficiency can cause severe reduction in new growth.

Although calcium may be adequate in the lowest leaves, levels in the meristematic upper plant region can still be low, causing defective upper leaf growth followed by necrotic patches in young leaves.

During early blooming phase, calcium deficiency can affect shoot growth, resulting in abortion of flower and bud structures.

Moderate calcium deficiency results in bended or twisted leaves, along with white streaks or white leaf margins in new leaf growth.

Calcium deficiencies make roots stubby and twisted and can cause root death.

Severe calcium deficiency can destroy all new growth and cause leaf mutations.

Calcium is crucial to cell elongation and is an important component in cell walls. It acts as a binding agent between cells and enhances uptake of negatively charged ions such as nitrate, sulfate, borate and molybdate.

Calcium is important for uptake of most macro and micro nutrients. Calcium is responsible for strong growth and very important in bud set and water uptake.

Calcium is a major constituent of cell walls, is critical to root and leaf development, seed production, pollen germination, cell mitosis, cell division and floral maturity.

Calcium binds primarily to cell walls and cell membranes. The high concentration of calcium in the cell wall and cell membranes provides rigidity to the plant cell wall structure. The absence of calcium causes degradation of the cell wall and lead to a softening of the plant tissue.

Adequate calcium helps plants resist fungal infections, which are often a big problem in hydroponics grow rooms.

Calcium plays a vital role in cell and root replication.

To properly augment calcium, use OG Organics™ Sensi Cal-Mag Xtra.



Magnesium – (Mg) (mobile in plant, immobile in soil)

magnesiumMagnesium deficiencies show first in older, lower leaves. The symptoms start from the margin inwards. The leaf mid-rib and veins remain green while leaf margins are yellow or whitish, sometimes leaving a green arrowhead shape in the centre of the blade.

Interveinal chlorotic mottling or marbling of older leaves proceeds toward younger leaves as magnesium deficiency becomes more severe. This is sometimes accompanied by leaf tips curling upwards.

Chlorotic interveinal yellow patches can occur near leaf centers. In these cases, leaf margins are the last to turn yellow.

Interveinal yellow patches then progress to necrotic spots or patches and scorching of the leaf margins. In some cases, leaves die and drop off.

Magnesium shortages result in defective bud production and inadequate bud development.

Excess magnesium interferes with calcium and potassium uptake.

Plants use magnesium to: produce chlorophyll; regulate enzymes for transport of nutrients and carbohydrates in the plant; cell replication; seed production.

Magnesium is an important co-factor in production of ATP, the compound that helps plants transfer energy. It is also a bridge between ATP and enzyme activity.

Flowering and fruiting plants use more and more magnesium as they progress towards maturation and harvest.

Magnesium helps plants generate energy through photosynthesis and is also crucial to protein synthesis.

To augment magnesium, use OG Organics™ Sensi Cal-Mag Xtra®.



Sulfur – (S) (moderately mobile in plant, immobile in soil)

sulfurDeficiencies show up on older leaves first. Then they show up on younger leaves, turning them light green, then yellow. These symptoms are accompanied by slow growth. Leaves lose color, but veins remain green.

Sulfur deficiency symptoms are easily recognizable and are frequently confused with the nitrogen deficiency symptoms.

Sulfur deficiency causes small and spindly plants with short, slender stalks and reduced growth rate with delayed maturity.

An overdose of sulfur can cause premature dropping of leaves.

Some plants require as much sulfur as they do phosphorus. Sulfur is a component of cystine and methionine (amino acids that make up plant proteins). Sulfur is therefore a component of plant proteins.

It also has a major role in root growth and chlorophyll production. Sulfur is essential to seed production and overall plant hardiness. It is an enzyme activator and coenzyme compound. Sulfur enhances flavor and odor; it also is a formative part of chloroplasts and nucleic acid proteins. Sulfur deficiency decreases protein synthesis and causes significant reduction in leaf chlorophyll levels.

Please note that augmentation of sulfur is NOT achieved by the use of sulfur burners.



Boron – (B) (immobile in plant, mobile in soil)

boronDeficiencies show up first in younger leaves; they turn yellow. Boron deficiencies resemble calcium deficiencies. Symptoms include stunting, discoloration, death of growing tips, and floral abortion.

Boron deficiencies stunt roots, mutate leaves, and create brittle leaves that appear bronzed or scorched.

Boron deficiency symptoms first appear at growing points. This results in a stunted appearance and short internodes (rosetting). Both the pith and epidermis of stems may develop hollow, roughened or cracked stems.

Leaf margins discolor and die backs. Necrotic spots develop between leaf veins. Deficient leaves become thick and they may wilt with necrotic and chlorotic spotting.

If you have a potassium deficiency, plants have a hard time absorbing boron.

Excessive boron can cause the same kinds of problems as calcium deficiency cause. To complicate matters, the symptoms of excess boron can resemble the symptoms of deficient boron.

Boron is used for sugar transport within the plant. It helps with cell replication, production of amino acids, pollination, seed production, carbohydrate synthesis and transport, cell division, differentiation, maturation, respiration and growth, and water uptake.

Boron is essential for plant growth but its mode of action is poorly understood. Boron is taken in by roots and transported via xylem to other parts of the plant. In the cell membrane it is mainly present as a borate ester. Boron is involved in lignification of cell walls and in differentiation of xylem.

Boron plays a regulating role in synthesis of cell walls. as well as in stabilization of constituents of the cell wall and cell membranes. Boron deficiency immediately results in inhibition of primary and secondary root growth.

Boron regulates phenol metabolism and synthesis of lignins by forming a stable borate ester with phenolic acids.

To properly augment boron, copper, cobalt and other micronutrients, use Advanced Nutrients Micro or Well Water Micro.



Cobalt – (Co) (immobile in plant/immobile in soil)

cobaltDeficiencies are rare, but express themselves as chlorosis of younger leaves.

Cobalt is a chelation “bridge” that assists uptake of other metals and nitrogen fixation. It assists enzymes related to manufacture of aromatic compounds. It is also required for a few bacteria and algae.

Cobalt is essential to proper use of nitrogen Three enzyme systems of Rhizobium bacteria are known to contain cobalamin. There’s correlation between cobalt concentration, nitrogen fixation and root nodule development.

Cobalt is required for methionine synthesis, ribonucleotide synthesis and synthesis of methylmalonyl-coenzyme A mutase. The latter is necessary for the synthesis of leghemoglobin, which plays a major role in protection of nitrogenase against oxygen, which is able to irreversibly damage the enzyme.



Copper – (Cu) (immobile in plants/mobile in soil)

copperDeficiencies show up first on youngest leaves, young tips, buds and shoots. Older leaves develop chlorosis, growing tips die and bud development is small. Copper deficiencies cause irregular growth and pale green leaves that wither at leaf margins.

Leaves at top of the plant wilt first, followed by chlorotic and necrotic areas on leaves, and necrosis of the apical meristem (the center stem of the plant).

Leaves on top half of plant show unusual puckering with veinal chlorosis. Copper deficiencies also show on the leaf, where the petiole joins the main stem of the plant beginning about 10 or more leaves below the growing point.

Excess copper is extremely dangerous to plants. Plants can develop iron chlorosis, stunted growth and stunted root development. Toxic buildup of copper occurs quicker in acidic soils.

Copper activates several enzymes, is needed for photosynthesis, and assists metabolism of carbohydrates and proteins. It intensifies color and flavor. It is essential in several enzyme systems and in plant respiration.

Copper is a divalent cation and is taken up by the plant as Cu+ or as a copper chelate complex and transported via xylem and phloem.

Copper deficiency immediately harms activity of copper-containing enzymes, but remember, an excess of copper is toxic to plant cells.



Chlorine – (CL) (immobile in plants, mobile in soil)

chlorineBelieve it or not, chlorine is essential for plant growth. It’s needed for photosynthesis. It’s an enzyme activator that assists production of oxygen from water and in water transport regulation.

Plants use chlorine as chloride ion. Chlorine is useful as a charge balancing ion and for turgidity regulation, keeping plant cells free of infection by disease. It helps open and close stomata by increasing osmotic pressure in cells.

Excess chlorine causes burnt tips and margins on young leaves. If chlorine levels are too high, cuttings will not root well, and seeds may not germinate.

High chlorine levels also cause leaves to take on a yellowish bronze color, and they are slow to develop. Chlorine is commonly used to treat drinking water, so you are far more likely to see an excess of chlorine in your garden rather than a deficiency.

If you determine that chlorine is at toxic levels in your garden, get a reverse osmosis unit or distiller to remove chlorine from the water you use for your plants.



Molybdenum – (Mb) (mobile in plant, immobile in low pH soils)

molybednumDeficiencies show up in older and middle-aged leaves first, and then show up in younger leaves.

Molybdenum is rarely deficient in most plants, but chlorosis symptoms similar to nitrogen deficiency are typical of molybdenum deficiency, along with scorching and strapping of leaf margins.

Molybdenum deficiency often occurs when sulfur and phosphorus are deficient. It can reveal itself as interveinal yellow spotting and mottling of older leaves. Deficiency also shows as pale leaves (similar to nitrogen deficiency), with some marginal leaf chlorosis. New leaves may twist and leaves may cup and thicken.

Excessive molybdenum looks like iron or copper deficiency.

Molybdenum is needed for the reduction of absorbed nitrates into ammonia prior to incorporation into amino acids. It performs this function as part of the enzyme nitrate reductase.

In addition to direct plant functions, molybdenum is used for nitrogen fixation by nitrogen-fixing bacteria.

Molybdenum is primarily present in the form of MoO4. Depending on the environmental conditions a molybdate ion can accept one or two protons. Polyanions such as tri- and hexamolybdate can be formed under certain physiological conditions. Molybdenum (Mo) has limited mobility in plants and is apparently transported through the xylem and phloem.

Several enzymes are known to use Mo as a co-factor. The two most important molybdenum-containing enzymes are nitrogenase and nitrate reductase.

Molybdenum is directly involved in the reduction of nitrogen. Nitrogen molecules bind to molybdenum atoms in the nitrogenase complex. After activation of the nitrogenase complex, the iron-molybdenum complex changes its structure and as a result reduction of nitrogen occurs. The electrons required for this reduction are supplied by an iron-sulfur protein which is part of the nitrogenase complex. This is an energy-intensive reaction.

Nitrate reductase reduces nitrate into nitrite in the nitrogen assimilation process of the plant. Nitrate reductase contains a heme-iron molecule and two molybdenum atoms. FAD, cytochromes [Fe2/Fe3] and molybdenum [Mo(V)/(VI)] are functional parts of the nitrate reductase complex and the electron transport chain. Electrons derived from NADPH are used to reduce nitrate to nitrite. The activity of nitrate reductase is reduced during molybdenum deficiency but can be restored by adding molybdenum.

As you can see, this hard to pronounce micronutrient is important to plant functions.



Manganese – (Mn) (immobile in plant, immobile in high pH soils)

manganeseDeficiencies show up on young leaves first: they develop interveinal chlorosis (yellowing between veins or mottling laterally along the leaf margins). The discoloration goes from light green to white, but veins remain green. The leaves become bronze-colored, and then die.

Manganese becomes deficient if root zone or nutrient water pH goes much above 6.9. Severe Mn deficiencies cause necrotic leaf spot, premature leaf drop, and stunting of leaves, shoots and buds. Severe Mn deficiencies mimic magnesium deficiencies.

Excessive manganese interferes with plant absorption of zinc and iron. It also slows overall plant growth, and causes brown spots encircled by chlorotic circles, on older leaves.

If you are dosing plants with high amounts of calcium or phosphorus, your plants will need more manganese.

Manganese works with plant enzymes to reduce nitrates and aids in protein production. Manganese is involved in pollen germination, plant respiration, photosynthesis, and nitrogen assimilation. It activates multiple enzymes and plays a pivotal role in the chloroplast membrane system.



Iron – (Fe) (immobile in plant, immobile in high ph soil)

ironIron deficiency is common in many plants, especially those grown indoors.

Deficiencies initially show as interveinal chlorosis in young leaves, with leaf veins green in color and older leaves unaffected. Leaves are smaller than normal.

Iron deficiency is especially a problem in alkaline conditions, or in wet, poorly root zone media. Iron becomes more bioavailable when root zone and nutrient water becomes more acidic, or when the proper chelates are bound with the iron.

Iron deficiency also reveals itself as interveinal chlorotic mottling of immature leaves. In severe cases, new leaves lack chlorophyll but show little or no necrotic spots. Chlorotic mottling of immature leaves starts first near bases of leaflets so that the middle of the leaf appears to have a yellow streak.

Cool temperatures, high humidity and wet root zone conditions create Fe deficiencies, especially if Fe is already in short supply.

Iron is difficult for plants to absorb and to transport. That’s why you should only use Advanced Nutrients nutrient formulas- they are properly chelated for fast and easy absorption of iron and other key micronutrients.

Plant uptake of Fe decreases with increased soil pH, and is adversely affected by high levels of available P, Mn and Zn in soils. Excessive iron causes bronzing of leaves with tiny brown spots.

Plants use iron for protein and nucleic acid metabolism, chlorophyll formation and electron transport. Enzymes (catalase, peroxidase, cytochromes) and photosynthesis components require iron.

The ratio of iron and sulfur available to plants directly affects their ability to take in nitrogen.

Iron in plants and root zones are mostly found bound to chelates; that’s why free iron levels are extremely low (10mM). Iron has to be reduced to Fe+ at the root surface before being transported to the cytoplasm (only grasses can absorb iron in the form of Fe3+). In the xylem iron is transported in the form of a iron-carbohydrate complex.

Iron is a key component of formulas such as Advanced Nutrients Revive, which cause crops to come back to life after suffering stress, predator attack, disease, drought or excess heat.



Silicon – (Si) (immobile in plant)

siliconSilicon is a very important plant nutrient. It is a vital component of epidermal cell walls. It strengthens plants so they can fight off diseases and resist insects, drought, heat and stress.

The performance-enhancing benefits of potassium silicate are most easily provided by using Advanced Nutrients Barricade. Advanced Nutrients Barricade substantially strengthens plants’ ability to transport nutrients and other substances in roots and internal plant cells.

Barricade increases cell wall stability, speeds up root cell replication, builds stronger and more extensive root systems, increases nutrient absorption and resistance to stress/drought, and enhances plants’ ability to resist pathogens and insects.

Barricade contains superior forms of silica that bind with roots and cells to increase strength and function. Silica is a buffering and balancing substance that helps plants deal with potentially-toxic levels of salts, minerals and pollutants.

Barricade will help give your plant a larger, stronger, more vigorous living infrastructure. Our studies show that using Barricade results in higher yield and better quality fruits, flowers, nuts and vegetables.

It’s hard to determine if plants have a deficiency of silicon, but regular doses of Barricade provide a wide range of benefits.



Zinc – (Zn) (mobile in plants, immobile in high ph soils)

zincZinc deficiencies are among the more serious of micronutrient deficiencies and should be corrected as soon as they are diagnoses.

Deficiency first shows itself as pronounced interveinal chlorosis in young leaves and mid-shoot leaves. You might also see interveinal yellowish areas starting at leaf tip and margins and eventually affecting all growing points of the plant.

Interveinal chlorotic mottling may be mimic iron and manganese deficiencies except for that it is accompanied by tiny leaves, and rosetting (short internodes).

Other signs of zinc deficiencies include grayish brown spots that form on leaves halfway up the plant and then spread. When zinc deficiency onset is sudden, such as when zinc is not present in the nutrient solution, the chlorosis can appear to be identical to that of iron and manganese deficiency.

Excess zinc toxicity often looks like copper deficiency because it interferes with uptake of copper. Symptoms of some fungal and viral diseases can resemble symptoms of excess zinc, which can manifest as upward-curling leaves.

Excess zinc can cause iron deficiencies and in extreme cases it can cause plant death, but it is uncommon to have excess zinc. One way that excess zinc can be generated is when growers use a farm feed tank or metal garbage can for nutrient water. These are often zinc coated, and the coating can come off easily and poison your plants with toxic zinc buildup.

Also be advised that some types of manufactured lava rock root zone media contain high zinc levels.

Zinc is essential for growth regulation and regulating carbohydrate consumption. Zinc improves chlorophyll function. It’s a component in many enzymes and is important in enzyme systems, particularly for water absorption and usage. It’s essential for plant hormone balance, especially auxin (IAA) activity and electron transport.

Zinc is absorbed through roots. After it reaches the xylem it is transported as a free Zn+ ion. Plants depend on several zinc-containing enzymes, including alcohol dehydrogenase. In Super Oxide Dismutase (SOD), zinc is complexed with copper by means of a nitrogen atom from histidine. Carbonic anhydrase binds carbon dioxide, which makes it possible to reversibly store CO2 as HCO3-. This enzyme, found in the chloroplast and in the cytoplasm, consists of six subunits each of which binds a zinc atom.

Zinc is essential for protein synthesis and for the activity of RNA polymerase. Zinc also plays a role in the synthesis of tryptophan from indol thus affecting the formation of indol acteic acid by the plant.

Zinc is a critical miconutrient and must be properly provided to plants in a form that is bioavailable to them.



Nutrient Information Review

We hope that the information provided above, along with the pictures, will help you understand how to diagnose nutrient problems.

It’s important to realize that nutrients interact with each other, with root zone media and with environmental conditions.

If you suspect a nutrient deficiency or excess, the first thing to do is a mini-flush of your root zone using Advanced Nutrients Flawless Finish.

Then create a nutrient solution using an Advanced Nutrients comprehensive fertilizer such as Sensi Pro or Connoisseur.

If you are absolutely sure that you have a nutrient deficiency, you can remediate it using Advanced Nutrients products such as Well Water Micro, Micro, and other specialty nutrient formulas.

Constantly monitor your nutrient solution pH and root zone to make sure they are between 5.8 and 6.3 pH.

Check your plants carefully to make sure that what appear to be nutrient problems are not actually caused by pests, diseases, heat, drought or environmental stress.

Carefully analyze the problems before administering any special formulas. And when you do administer special formulas, start by using small amounts and carefully study the plants to see if the chlorosis, mottling or other problems are receding as you apply the formula.

If you are correctly mixing and administering Advanced Nutrients formulas using proper pH to plants with a clean root zone, it is likely that the plant problems you are seeing are not caused by nutrient issues.

We guarantee that our formulas will produce spectacular results when mixed and used as directed. If you are using our nutrients and having what you believe are nutrient problems, contact our tech support staff.

If you are using nutrients made by other companies and having nutrient problems, the best solution is to flush your root zone and immediately start using our nutrients, which are the only ones in the hydroponics indoor gardening industry backed by a 100% moneyback guarantee.


Latest Posts

About the Author

The Advanced Nutrients Team

Since 1999, Advanced Nutrients has been committed to educating the community and bringing the most up-to-date knowledge to the forefront of grows across the globe. Every article you read here has been curated by Advanced Nutrients’ industry experts, so you can continue raising your bud weight… and your reputation.

Advanced Nutrients Leaf Logo

Get More Articles Chock-Full of Cultivation Tips, Tricks, and Strategies Delivered Straight To Your Inbox

Sign up for our free newsletter and receive more relevant cannabis cultivation content right in your inbox! Subscribe below.

Chat with Buddy AI

buddy image
buddy image
minimize chat

minimize chat window

Hi, I'm Buddy, and I am powered by OpenAI' ChatGPT. Ask me a question. Here are some example topics: Example 1: What is the best way to germinate my seeds? Can you explain in much detail as possible. Example 2 : What Advanced Nutrients' base nutrient should I use for growing cannabis at home? As AI is prone to errors, the information provided should be used as a general guide, not as a definitive source. If you are experiencing problems and trying to troubleshoot, contact our experts here for free.

send message

Change Region

If your country/region is not listed on this page, please find your local Contact Details, Authorized Retailer and Grower Support on our Global Site.

United States


Need Help Growing?

Over time, components within the nutrients settle on the bottom of the bottle. When you pour a bottle without shaking it, you can potentially be pouring out an unbalanced solution. Shaking up the nutrient bottle ensures you are pouring the right blend into your reservoir, giving your crops the nutrition they need.

Usually, it’s not a problem. But some products are incompatible with each other and can damage your plants when they’re used together. For example, bloom boosters with high PK numbers or low-grade silica products can destabilize your nutrient mix and cause nutrient lockout.

Nutrient manufacturers design their products to be used with each other. In doing so, they include specific portions of each nutrient in each product, so crops receive the right nutrition through each stage of the grow cycle. When you stick with one manufacturer, you don’t have to worry about inadvertently destabilizing your nutrient mixture. One example of why you need to stick with only one manufacturer’s products is Advanced Nutrients’ pH Perfect line. These products are designed to keep your crops’ root zone within a specific pH range. When you use them alongside products from another manufacturer, we can’t guarantee your root zone will maintain its optimal pH level.

Yes! If you’re growing with Advanced Nutrients products, you can use our easy nutrient calculator to generate the correct nutrient chart for your crops in seconds. Check out Advanced Nutrients’ nutrient calculator here. Another great resource is our library of free custom-growing recipes. Try our expert grower-tested nutrient schedules here.

You can also download our official BudLabs app to generate nutrient schedules and receive real-time notifications for specific tasks, including feeding your crops. Upgrade to BudLabs Pro to maintain profiles on an unlimited number of crops.

If you are a grower, visit this link to find the closest Advanced Nutrients Authorized Retailer. If you are a retailer, visit this link to identify our official distributors.

Our greatest passion is growing great cannabis—and helping other growers do the same. That’s why we offer complimentary cultivation support 24/7 from Monday to Friday and from 9 AM until 7 PM PST on Saturday… With the same level of advice licensed producers would pay consultants tens of thousands of dollars to unlock.
Just call 1-800-640-9605 or email support@advancednutrients.com. For Spanish-speaking growers, email spanishsupport@advancednutrients.com.

Yes! If for any reason you are not absolutely thrilled with the results you achieve when you use our products, just bring the unused portion, along with your original sales receipt, back to the place of purchase within six months, and ask for your money back. Find out more about our Grower Guarantee here.

Advanced Nutrients has spent many thousands of man-hours developing a technology that automatically balances your pH for you — putting it in the “sweet spot” and holding it there for one week.

And the technology is so “smart” that it can account for many of the aforementioned variables in your grow room. Our proprietary pH buffering agents and stabilizing mechanisms became the foundation of a new system aptly called pH Perfect® Technology. Learn all about it here.